Подтягивающий резистор

Фильтры и резисторы

С помощью резисторов и конденсаторов можно делать фильтры. Так называются RC фильтры.

В качестве примера рассмотрим ФНЧ и ФВЧ.

В схеме фильтра низких частот конденсатор C1 забирает на себя высокочастотные токи. Его сопротивление для них намного меньше, чем у нагрузки. Он шунтирует нагрузку. Таким образом, можно получить низкую частоту, отделив от нее все высокие составляющие.В фильтре высоких частот наоборот. Высокие частоты свободно проходят через C1, и если в сигнале есть низкочастотные, то они пойдут через R1.

Такие фильтры бывают разные по конструкции. П образные, Г образные и т.п. Конкуренцию резистору может составить катушка индуктивности или дроссель. У них меньше активное сопротивление, но реактивное больше. Благодаря этому снижаются потери от активного сопротивления.

Post Views:
1 691

Для чего нужна?

Прочитать параметры, которые часто имеют несколько цифр, достаточно сложно, как и нанести их. При указании номинала, если размеры позволяют, часто используют букву для того, чтобы определить дробную величину значения.

Примером можно назвать 4К7, что означает 4,7 кОм. Однако, также подобный метод в некоторых случаях не применим.

Цветовая схема маркировки имеет следующие особенности:

  1. Легко читаемая.
  2. Проще наносится.
  3. Может передать всю необходимую информацию о номиналах.
  4. Со временем информация не стирается.

При этом, можно отметить основное различие в данной маркировке:

  1. При точности 20% используется маркировка, содержащая 3 полоски.
  2. Если точность составляет 10% или 5%, то наносится 4 полоски.
  3. Более точные варианты исполнения имеют 5 или 6 полосок.

Подведя итоги, можно сказать, что нанесение цветов позволяет узнать точность и номинальные значения резистора, для чего нужно использовать специальные таблицы или онлайн-сервисы.

Последовательное соединение RC

Конденсаторы очень часто включают последовательно с сопротивлениями, но если даже специального сопротивления нет, любой конденсатор обладает определённой величиной активного сопротивления, которую необходимо учитывать в точных расчетах. Есть понятие «добротность» конденсатора, которая проявляет  активную составляющую его сопротивления

При последовательном соединении, через все элементы цепи протекает один ток, который называем – общий.

Сначала откладываем вектор тока, фазу которого принимаем равной нулю. Вектор напряжения на активном сопротивлении, откладываем в том же направлении, так как на активном сопротивлении ток и напряжение совпадают по фазе.

К концу вектора напряжения на активном сопротивлении прикладываем начало вектора напряжения на емкости. Фаза напряжения на емкости отстает от фазы напряжения на активном сопротивлении на 90 градусов, а вектор отстающего напряжения откладывается вниз.

Векторная диаграмма напряжений представляет собой прямоугольный треугольник, который позволяет определить все составляющие по теореме Пифагора.

Активное сопротивление R включенное в цепь с катушкой или конденсатором уменьшает угол сдвига фаз.

Соотношение сопротивлений в такой цепи соответствует треугольнику сопротивлений. Общее сопротивление обозначается буквой Z, определяется как гипотенуза прямоугольного треугольника, где катеты Rа и XС

Z 2 = Rа2 + X2С

В цепи L C, в отличие от цепи только с C, появляется активная мощность, следовательно она потребляет энергию источника и выделяет тепло.

Соотношение мощностей такой цепи соответствует треугольнику мощностей. Где S – полная мощность, определяется как гипотенуза треугольника, где катеты Р и QС

S2 = Р2 + Q2С

Векторная диаграмма и все треугольники сопротивления и мощностей подобные, значит, угол φ (сдвиг фаз) является общим для всех треугольников

Как понизить напряжение с помощью резистора

Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость снизить входное напряжение. Проще всего этого можно добиться, используя схему с двумя резисторами, более известную как делитель напряжения. Классическая схема выглядит так:

В этом случае напряжение подаётся на два резистора с использованием параллельного подключени, а на выходе его получают с одного. Подбор номиналов резисторов осуществляют по формуле так, чтобы напряжение, снимаемое на выходе, составляло какую-то часть от подаваемого. Расчет резистора для понижения напряжения можно воспользовавшись формулой, основанной на законе Ома:

Uвых= (Uвх*R2)/(R1+R2), где

Uвх – напряжение на входе, В;

Uвых – напряжение на выходе, В

R1 – показатель сопр. 1-ого резистора (Ом)

R2 – показатель сопр. 2-ого элемента, (Ом)

Подбор резистора для понижения напряжения

Для подбора нужного сопротивления резистора можно воспользоваться готовыми онлайн-калькуляторами или программами для моделирования работы электронных схем. Симуляторы электрических цепей способны не только рассчитать напряжение на выходе в зависимости от сопротивления элементов и способа их подключения, но и обладают функционалом, позволяющим визуализировать то, как падает ток и напряжение на резисторе. Например, приложение EveryCircuit позволяет изменять в схеме параметры элементов, выбирать скорость симуляции, получать данные в различных точках. При этом можно наблюдать за динамикой изменения значений, используя для ввода входных параметров вращающийся лимб в нижнем правом углу.

Существует ещё ряд бесплатных программ для эмуляции, позволяющие выполнить, в том числе, расчёт резистора при понижении напряжения, например:

  • EasyEDA;
  • Circuit Sims;
  • DcAcLab;

и другие.

В статье мы ознакомились с понятием сопротивления, узнали о его единицах измерения, о маркировке резисторов, о программах эмулирующих работу цепи и облегчающих подбор нужного сопротивления, а также рассмотрели примеры расчёта падения напряжения на резисторе.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Значение Cos φ

Cos φ в практической электротехнике имеет очень важное значение. Реальные нагрузки, типа электромоторов и трансформаторов, имеют большую индуктивную составляющую сопротивления, то есть, фактически, представляют собой цепи RL

Для таких цепей неизбежно существует сдвиг фаз, который приводит к тому, что полная мощность S значительно превышает активную мощность (P).

Из формулы видно, что чем меньше Cos φ (Чем больше угол сдвига фаз), тем меньшую часть активная мощность составляет от полной мощности .

Только активная мощность является полезной, если источник затрачивает полную мощность, а от нагрузки мы можем получить только активную мощность, значит, Cos φ имеет смысл электротехнического КПД или коэффициента мощности.

В идеале источник должен отдавать такую мощность, которую будет потреблять нагрузка. Реальные устройства неизбежно содержат индуктивности (катушки, обмотки, и т.п.), значит, источник вынужден отдавать полную мощность, которая значительно больше, активной.

Проектирование устройств и электрических цепей должно иметь целью получить значение Cos φ как можно ближе к единице, то есть влияние индуктивности надо свести к минимуму. Плохие значения Cos φ приводят к большим неоправданным затратам электроэнергии.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 25,4.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Радиус качения

При качении шина подвергается действию центробежных сил. Величина центробежных сил зависит от скорости качения, массы и размеров шины. Под действием центробежных сит шина несколько увеличивается по диаметру. Испытания показали, что при качении шины со скоростью 180—220 км/ч высота профиля увеличивается на 10—13% (результаты испытаний шин на шоссейно-кольцевых мотоциклетных гонках).

Одновременно действие центробежных сил вызывает (за счет увеличения радиальной жесткости шины) некоторое увеличение расстояния от оси колеса до опорной поверхности (плоскости дороги) с одновременным уменьшением площади контакта шины с дорогой. Это расстояние называется динамическим радиусом шины Rо, который больше, чем статический радиус Rс, т. е. Rо>Rc.

Однако при эксплуатационных скоростях движения Rо, практически равен Rс.

Радиусом качения называется отношение линейной скорости движения колеса к угловой скорости вращения колеса:

Параллельная передача против последовательной

В параллельной архитектуре каждый компонент шины имеет собственный сигнальный тракт. Тракт может содержать 16 адресных линий, 16 линий данных, линию синхросигнала и линии передачи других сигналов управления. Значения адресов или данных по шине передаются одновременно по всем параллельным линиям. Это обеспечивает относительно простой запуск по событию с помощью запуска по состоянию или по комбинации. Такие функции имеются в большинстве осциллографов и логических анализаторах. Также имеется возможность сразу просмотреть зарегистрированные данные на экране осциллографа или логического анализатора. Например, на рисунке 1 для регистрации линий синхросигнала, адресных линий, линий данных и управления микроконтроллера используется логический анализатор. Используя запуск по состоянию, можно выделить требуемую передачу по шине. Для «декодирования» информации в шине необходимо просмотреть логическое состояние каждой адресной линии, линий данных и управления. В последовательных шинах вся эта информация передается последовательно по меньшему количеству проводников (иногда всего по одному). Это значит, что отдельный сигнал может включать информацию об адресе, управлении, данных и синхронизации. В качестве примера рассмотрим последовательный сигнал в шине CAN, представленный на рис. 2.


Рис. 1. Регистрация логическим анализатором линий синхросигнала, адресных линий, линий данных и управления микроконтроллера.

Это сообщение содержит начало кадра, идентификатор (адрес), код длины данных, данные, циклически избыточный код (CRC) и конец кадра, а также другие биты управления. Дополнительную сложность представляет собой то, что синхросигналы встроены в данные, для обеспечения соответствующего количества фронтов и синхронизации приемного устройства с тактовыми импульсами используется заполнение битами. Даже для тренированного специалиста крайне сложно быстро интерпретировать содержимое такого сообщения. А теперь представьте, что это сообщение с ошибкой, которое встречается всего раз в день и необходимо выполнить запуск по этому сообщению. Традиционные осциллографы и логические анализаторы просто не обладают достаточными функциями для анализа таких сигналов.

Даже для самых простых стандартных последовательных интерфейсов, например, I2C, гораздо сложней следить за тем, что передается по шине, по сравнению с параллельными протоколами.

В шинах I2C используются отдельные линии данных и синхросигнала. В этом случае хотя бы можно использовать синхросигнал в качестве опорного. Но попрежнему требуется найти начало сообщения (при передаче синхросигнала данные передаются медленно), вручную проверить и записать значения данных для всех нарастающих фронтов синхросигнала, а затем упорядочить биты в структуру сообщения. Можно потратить несколько минут только на декодирование отдельного сообщения в зарегистрированной осциллограмме, хотя нет никакой уверенности в том, что нужно именно это сообщение.


Рис. 2. Одно сообщение, зарегистрированное в шине CANbus.


Рис. 3. Одно сообщение, зарегистрированное в шине I2C.


Рис. 4. Структура сообщения I2C.

Если это не нужное сообщение, то придется начинать сначала утомительный и подверженный ошибкам процесс. Было бы хорошо выполнить запуск по содержимому сообщения, которое требуется найти, но запуск по состоянию и по комбинации, который использовался много лет в осциллографах и логических анализаторах, в данном случае использовать нельзя. Они предназначены для поиска комбинации, встречающейся одновременно в нескольких каналах. Для последовательных шин обработчики запуска должны поддерживать десятки тысяч состояний (одно состояние на бит). Даже при наличии такой функции запуска, программирование состояний для каждого представляет довольно сложный процесс. Имеется лучший способ! Такой способ предоставляют осциллографы серии DPO4000. В следующих разделах описано, как можно использовать осциллографы серии DPO4000 с некоторыми наиболее распространенными низкоскоростными последовательными шинами, применяемыми в проектировании встроенных систем.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

Типовая транзакция

Устройства, связанные через I2C, должны поддерживать определенную последовательность событий. Каждое событие соответствует определенному способу управления линиями тактовой синхронизации (SCK) и данных (SDA); как обсуждалось в статьях, приведенных в списке «Вспомогательная информация», эти два сигнала являются единственным средством, с помощью которого устройства на шине могут обмениваться информацией. Мы будем рассматривать одну информационную последовательность как «транзакцию»; это слово более уместно, чем «передача», поскольку каждая транзакция включает в себя как переданные данные, так и полученные данные, хотя в некоторых случаях единственными полученными данными являются бит подтверждения (ACK) или не-подтверждения (NACK), детектируемые ведущим устройством. Следующая временная диаграмма показывает типовую транзакцию I2C.

Временная диаграмма типовой транзакции I2C

Обратите внимание на следующее:

  • Пунктирная линия, соответствующая длительности логической единицы в тактовом сигнале, напоминает нам, что логическая единица (и для SCL, и для SDA) является «рецессивным» состоянием – другими словам, сигнал доходит до высокого логического уровня с помощью подтягивающего резистора. «Доминантное» состояние – это логический ноль, потому что сигнал будет на низком логическом уровне только тогда, когда устройство действительно приводит его к состоянию логического нуля.
  • Транзакция начинается со «стартового бита». Каждая I2C транзакция должна начинаться со стартового бита, который определятся как спадающий фронт на линии SDA, в то время как линия SCL находится в состоянии логической единицы.
  • Транзакция заканчивается «стоповым битом», определяемым как нарастающий фронт на линии SDA, в то время как линия SCL находится в состоянии логической единицы. Транзакции I2C должны заканчиваться стоповым битом; однако, как будет рассказано позже, на шине могут появиться несколько стартовых битов до того, как будет сгенерирован стоповый бит.
  • Данные действительны, когда на линии синхронизации установлена логическая единица, и изменяют состояние, когда на линии синхронизации установлен логический ноль; цифровые системы связи обычно ориентируются на изменения состояния на линиях, поэтому на практике данные считываются по нарастающему фрону на линии синхронизации и обновляются по спадающему фронту на линии синхронизации.
  • Обмен информацией происходит по одному байту за раз, начиная со старшего значащего бита; и за каждым байтом следует ACK или NACK.
  • Вы можете ожидать, что ACK будет обозначаться логической единицей, а NACK – логическим нулем, но в данном случае это не так. ACK соответствует логическому нулю, а NACK – логической единице. Это необходимо, потому что логическая единица является рецессивным состоянием – если ведомое устройство не работает, то сигнал, соответственно, будет поднят до NACK. Аналогично, ACK (указывается доминантным логическим нулем) может быть передан только в том случае, если устройство работает и готово продолжить транзакцию.

Следующий список описывает последовательность событий в вышеуказанной транзакции:

  1. Ведущее устройство генерирует стартовый бит, чтобы начать транзакцию.
  2. Ведущее устройство передает 7-битный адрес, соответствующий ведомому устройству, с которым оно хочет установить соединение.
  3. Последним битом в первом однобайтовом сегменте является индикатор чтения/записи. Мастер устанавливает этот бит в логическую единицу, если он хочет считывать данные с ведомого устройства, или в логический ноль, если хочет записать данные в ведомое устройство.
  4. Следующий байт – это первый байт данных. Он приходит либо от ведущего, либо от ведомого устройства, в зависимости от состояния бита чтения/записи. Как обычно, у нас есть 8 бит данных, начинающихся со старшего значащего бита.
  5. За байтом данных следует ACK или NACK, сгенерированный ведущим устройством, если это транзакция чтения, или ведомым устройством, если это транзакция записи. ACK и NACK могут означать разные вещи в зависимости от прошивки или низкоуровневой аппаратной схемы взаимодействующих устройств. Например, мастер может использовать NACK, чтобы сказать: «это последний байт данных», или если ведомое устройство знает, сколько данных должно быть отправлено, оно может использовать ACK для подтверждения того, что данные были успешно получены.
  6. Транзакция завершается стоповым битом, сгенерированным ведущим устройством.

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.

Последовательное соединение

Параллельное соединение

Схема

Резисторы следуют друг за другом

Между резисторами есть два узла

Узел — это соединение трех и более проводников

Сила тока

Сила тока одинакова на всех резисторах

I = I1 = I2

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

I = I1 + I2

Напряжение

Общее напряжение цепи складывается из напряжений на каждом резисторе

U = U1 + U2

Напряжение одинаково на всех резисторах

U = U1 = U2

Сопротивление

Общее сопротивление цепи складывается из сопротивлений каждого резистора

R = R1 + R2

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

1/R = 1/R1 + 1/R2 + … + 1/Rn

Общее сопротивление для двух параллельно соединенных резисторов

R = (R1 * R2)/R1 + R2

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

R = R1/n

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.

Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

R1 = 4 Ом, R2 = 2 Ом

Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

R = (R1 * R2)/R1 + R2 = 4*2/4+2 = 4/3 = 1 ⅓ Ом

Ответ: общее сопротивление цепи равно 1 ⅓ Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом

Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соеденены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Rламп = (R2 * R3)/R2 + R3 = 2*3/2+3 = 6/5 = 1,2 Ом

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи .

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.

Решение:

Найдем сначала сопротивление лампы.

Rлампы = R/2 = 10/2 = 5 Ом

Теперь найдем общее сопротивление двух параллельно соединенных резисторов.

Rрезисторов = (R * R)/R + R = R^2)/2R = R/2 = 10/2 = 5 Ом

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

I = ε/(R + r)

R + r = ε/I

r = ε/I — R

Подставим значения:

r = 12/0,5 — 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.

Резюме

Величина подтягивающего резистора I2C должна быть достаточно большой, чтобы уменьшить ненужное потребление тока, и достаточно маленькой, чтобы обеспечить приемлемое время нарастания. Расчеты, представленные в данной статье, могут помочь вам найти подходящее значение, но если вы хотите действительно оптимизировать свою шину I2C , вам, вероятно, потребуется измерить сигналы с помощью осциллографа (если возможно, используйте пробник с низкой емкостью) и отрегулировать подтягивающее сопротивление до тех пор, пока не достигнете желаемых характеристик времени.

Оригинал статьи:

Mark Hughes. I2C Design Mathematics: Capacitance and Resistance

Маркировка советских резисторов

Первым делом давайте разберемся с советскими резисторами.

Хоть ты что делай, а от советской электроники не убежишь. Поэтому,  немного теории вам не повредит.

Первым взглядом мы должны оценить, какую максимальную мощность может рассеивать резистор. Сверху вниз, внизу на фото, резисторы по мощностям: 2 Ватта, 1 Ватт, 0.5 Ватт, 0.25 Ватт, 0.125 Ватт. На резисторах мощностью 1 и 2 Ватта пишут МЛТ-1 и МЛТ-2 соответственно.

МЛТ – это разновидность самых распространенных советских резисторов, от сокращенных названий Металлопленочный, Лакированный, Теплоустойчивый.  У других же резисторов мощность можно прикинуть по габаритам. Чем больше резистор по габаритам, тем больше мощности он может рассеять в окружающее пространство.

Единицы измерения в МЛТэшках  – Омы –  обозначают как R или E.  Килоомы – буковкой “К”, Мегаомы буковкой “М”. Здесь все просто. Например, 33Е (33 Ома); 33R (33 Ома); 47К (47 кОм); 510К (510 кОм); 1.0М (1 МОм). Есть также фишка такая, что буквы могут опережать цифры, например, K47 означает, что сопротивление равно 470 Ом, M56 – 560 Килоом. А иногда, чтобы не заморачиваться с запятыми, тупо толкают туда буковку, например. 4K3 = 4.3 Килоом, 1М2 – 1.2 Мегаома.

Давайте рассмотрим нашего героя. Смотрим сразу на обозначение. 1К0 или словами ” один ка ноль”. Значит, его сопротивление должно быть 1,0 Килоом.

Давайте убедимся, так ли это на самом деле?

Ну да, все сходится с небольшой погрешностью.

Техническое обозначение

В радиоэлектронных схемах и технической документации принято условное обозначение резистора в виде латинской буквы R, вне зависимости от того, как он устроен. Возле буквы подписывается номинал элемента в соответствии с международной системой единиц (СИ) и его порядковый номер. Например, R21 150к означает, что радиодеталь имеет 21 номер в спецификации к схеме, а значение её сопротивления составляет 150 килоом.

Условно графическое обозначение принято изображать по ГОСТ 2 .728−74 ЕСКД. Согласно ему резистор изображается как прямоугольник, с каждой середины боковых граней которого выводится прямая линия, обозначающая вывод.

Если необходимо дополнительно указать мощность рассеивания элемента, то в середине прямоугольника ставятся чёрточки или римские цифры. Например, одна косая черта обозначает максимально допустимое рассеивание энергии 0,25 Вт, а римская двойка — 2 Вт. Такое обозначение резистора принято в странах Европы и бывшего СССР, в то время как в США он изображается в виде ломаной линии.

Вам это будет интересно Защита электросети с помощью автоматического выключателя

В случае изображения регулируемого резистора сверху чертится стрелка, обозначающая подвижный контакт. Кроме этого, для подчёркивания особенности конструкции прямоугольник перечёркивается наклонной линией, внизу которой рисуется полочка. Возле неё ставится буква, служащая классификатором элемента. Например, U — для варистора, P — для тензорезистора.

На самом корпусе резистора проставляется цифробуквенный код или рисуются цветные полоски. Такая маркировка нужна для того, чтобы можно было определить, какой у резистора номинал, не прибегая к измерениям и схемам.

Число в коде обозначает сопротивление в омах, а буква, стоящая после него, указывает на множитель. В полосочном же обозначении используется принцип того, что каждый цвет полоски соответствует своему порядку. Например, красный — двойке, зелёный — пятёрке. Первые две полоски обозначают номинал, третья — множитель, а четвёртая и пятая — допуск.

С какой стороны считать полоски на резисторе

Сопротивление резистора определяют по первым цветовым кольцам:

  1. У элементов с тремя полосами первые два цвета — это цифры, а третий цвет — множитель.
  2. У элементов с четырьмя полосами первые два цвета — это цифры, третий цвет — множитель, четвертый цвет — допустимое отклонение сопротивления резистора от его номинального значения.
  3. У элементов с пятью полосами первые три цвета — это цифры, четвертый цвет — множитель, пятый цвет — допустимое отклонение сопротивления резистора от его номинального значения.
  4. У элементов с шестью полосами первые три цвета — это цифры, четвертый цвет — множитель, пятый цвет — допустимое отклонение сопротивления резистора от его номинального значения, шестой — температурный коэффициент.

Цветная маркировка на резисторах читается слева направо. При этом нужно правильно определить левую сторону. Как правило, первая полоса наноситься ближе к одному из выводов резистора. Если же элемент имеет малый размер и на нем невозможно соблюсти нужные пропорции разграничения маркировки, то отсчет ведется от цветной полосы, которая в сравнении с остальными самая широкая.

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга — возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

R = R1*R2 / (R1+R2)

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все про сервера
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: