Какой идеальный вольтметр?

Отличие от тестера

Люди, особенно те, кто далек от техники, часто путают два этих устройства. Они немного похожи и даже обладают похожими функциями, но мультиметр — более многофункциональное устройство, способное изменять различные параметры системы и выполнять прозвонки. Обычный тестер содержит в себе всего пару диодов, способным указать значение напряжения и целостности цепи.

Важно! Тестеры, как и мультиметры, вольтметры и амперметры также бывают стрелочными, то есть аналоговыми и цифровыми. Последние в любых являются более точными и определяют величины с минимальными погрешностями


Тестер очень похож на мультиметр, но обладает меньшим функционалом

Виды вольтметров

Возьмем для пример . Чтобы разобраться, как работает этот прибор, проведем их классификацию.

По принципу действия вольтметров они делятся на электромеханические (рис.1) и электронные (рис.2) приборы. Первые из них могут иметь магнитоэлектрическую или электромагнитную измерительную систему. Второй тип вольтметров представлен аналоговыми и цифровыми устройствами.

По назначению приборы могут делиться на такие вольтметры:

  • для переменного тока;
  • для постоянного тока;
  • импульсные;
  • мультифункциональные.

По способу использования вольтметры производятся в виде переносных или встроенных устройств.

Электромеханические приборы

Вольтметры этого вида имеют в своем составе измерительную систему, которая включает в свою конструкцию подвижную рамку с прикрепленной к ней стрелкой-указателем и измерительной катушкой. Исполнение этой рамки напоминает применяемое в амперметре. Отличием, как работает амперметр и вольтметр является то, что амперметр подключается к специальному шунту, а измерительная цепь вольтметра подсоединяется непосредственно к месту замера напряжения.

При подключении прибора к электрической цепи через катушку измерительной системы проходит ток, генерирующий магнитное поле, взаимодействующее с магнитным полем постоянного магнита. В зависимости от величины напряжения, стрелка будет отклоняться на больший или меньший угол, указывая величину напряжения на измерительной шкале прибора.

Электронные устройства

Чтобы понять, как работает цифровой , важно рассмотреть какие функциональные элементы входят в его состав. К ним относятся: система преобразования переменного тока в постоянный, масштабируемый преобразователь, модуль преобразования силы постоянного/переменного тока в напряжение, устройство преобразования электросопротивления в напряжение

В основу работы таких приборов положен принцип аналогово-цифрового преобразования токового сигнала с двухтактным интегрированием. В процессе работы вольтметра по такой схеме происходит преобразование входного переменного (постоянного) напряжения в постоянное с последующим его усилением и подачей на модуль, который обеспечивает визуализацию измерительных данных. В аналоговом приборе в качестве системы визуализации используется стрелка со шкалой, а в цифровом – система преобразования сигналов в цифровые коды, которые выводятся на ЖК-дисплее в виде величины напряжения.

Как подключать вольтметр

Для измерения величины напряжения важно правильно подключать вольтметр. Нужно следить, чтобы он подключался к сегменту электрической цепи или источнику напряжения параллельно

В таком случае высокое сопротивление системы вольтметра не будет оказывать влияние на показания прибора. Сила тока, которая протекает через вольтметр, должна быть минимальной.

Ключевые технические характеристики вольтметров

Чтобы правильно подобрать вольтметр для измерения напряжения, нужно знать его основные характеристики. К основным относятся следующие.

Величина внутреннего напряжения. Этот показатель должен быть как можно выше. Чем большим будет сопротивление вольтметра, тем меньшее влияние он будет оказывать на показания измерений, и тем большая точность измерений будет достигнута.

Измерительный диапазон. В зависимости от его величины прибор можно будет использовать для контроля тех или иных значений напряжения. Бывают исполнения вольтметров, которые рассчитаны только на работу с небольшими напряжениями – мили, или микровольтметры либо для работы с большим напряжением – кило-, мегавольтметры.

Точность измерений. Этот показатель указывает на возможные отклонения измеряемой величины от действительного значения.

Какие бывают типы вольтметров

Вольтметры, как и любые другие электроизмерительные приборы, классифицируются в зависимости от назначения и конструкции. Более подробно на рисунке ниже:

Вольтметр с подвижной катушкой и с постоянными магнитами (PMMC)

Такой прибор работает по магнитоэлектрическому принципу. В двух словах это означает следующее — в постоянное магнитное поле помещается катушка измерительного прибора, которая подключается к электрической цепи, в которой проводится измерение. При протекании тока через катушку электромагнитная сила создаст вращающий момент, который повернет стрелку измерительного прибора на определенный угол.

Вольтметр с подвижной катушкой и с постоянными магнитами (PMMC) используется только в сетях постоянного тока. Такой тип устройства имеет очень низкое энергопотребление и очень высокую точность. Единственным его недостатком является стоимость.

Электромагнитный вольтметр (MI вольтметр)

Электромагнитный вольтметр может использоваться для измерения как постоянного, так и переменного напряжения. В таком типе приборов отклонение стрелки зависит от напряжения катушки. Электромагнитные вольтметры разделяют на два типа:

  • электромагнитный измерительный прибор с плоской катушкой.
  • электромагнитный измерительный прибор с круглой катушкой.

Электродинамический вольтметр

Электродинамический вольтметр используется для измерения напряжения цепи переменного и постоянного тока. В приборах этого типа калибровка одинакова как для измерения переменного, так и постоянного тока.

Вольтметр с выпрямительной системой

Такой тип прибора используется в цепях переменного тока для измерения напряжения. Выпрямитель преобразует переменный ток в постоянный ток, после чего сигнал постоянного тока измеряется прибором с подвижной катушкой и с постоянными магнитами.

Аналоговый вольтметр

Аналоговый вольтметр используется для измерения переменного и постоянного напряжения. Он отображает показания через указатель, который зафиксирован на калиброванной шкале. Отклонение указателя зависит от крутящего момента, действующего на него. Величина развиваемого крутящего момента прямо пропорциональна измеряемому напряжению.

Цифровой вольтметр

Вольтметр, который отображает показания в числовой форме, известен как цифровой вольтметр. Цифровой вольтметр дает достаточно точный результат.

Прибор, который измеряет постоянное напряжение, известен как вольтметр постоянного напряжения, а вольтметр переменного напряжения используется в цепи переменного тока для измерения переменного напряжения.

Почему вольтметр имеет большое сопротивление?

Вольтметр имеет очень высокое внутреннее сопротивление, потому что он измеряет разность потенциалов между двумя точками цепи. Вольтметр не влияет на ток измеряемой цепи.

Если измерительный прибор имеет низкое сопротивление, через него будет проходить ток (согласно первому закону Кирхгофа ток будет распределяться между двумя ветвями цепи — часть тока будет протекать через нагрузку, а часть через вольтметр, именно поэтому его сопротивление должно быть как можно больше — чтоб минимизировать ток), и на выходе мы получим неверный результат. Большое сопротивление вольтметра не позволяет току проходить через него (разрыв цепи), и, таким образом, получают показания напряжения.

Что такое внутреннее сопротивление

В электрической цепи обязательно присутствует источник питания. Обычно, оценивая его параметры, указывают, какую разность потенциалов между клеммами он обеспечивает. Если говорить об идеальной модели источника питания, то можно предположить, что он способен обеспечить в электрической цепи любую мощность с учётом имеющейся разности потенциалов.

Реальные устройства в этом аспекте сильно отличаются друг от друга

Чтобы определить работоспособность аккумулятора важно знать, что такое внутреннее сопротивление. Обычно с течением времени и вследствие износа оно постепенно возрастает

Анализируя уровень и скорость того, как изменяется внутреннее сопротивление источника тока, можно принять решение о продолжении использования батареи или о необходимости её замены.

Сказанное следует пояснить на примере. Для запуска мотора автомобиля используется аккумулятор на 12 Вольт. Известно, что при этом сила тока может достигать 250 Ампер. Однако, если взять другой элемент питания с такой же разницей потенциалов, то вполне возможна ситуация, когда от него запуск мотора осуществить не получится.

В качестве примера такого источника можно рассмотреть несколько гальванических элементов, соединённых последовательно. Разница в двух рассматриваемых ситуациях определяется наличием различного внутреннего сопротивления.

Этот параметр для аккумулятора представляет собой сумму нескольких слагаемых: сопротивление каждого вывода, корпуса и используемого электролита. В некоторых источниках тока при этом могут учитываться дополнительные элементы, включённые в данную цепь.

Важно учитывать, что понятие омического сопротивления в этой ситуации неприменимо, поскольку требуется наличие в цепи только пассивных элементов. Когда создана замкнутая цепь, ток протекает не только по ней, но и внутри источника тока

Внутреннее сопротивление определяет величину потерь энергии в нём.

Его наличие в цепи можно проиллюстрировать ещё одним примером. Если на клеммах аккумулятора имеется 12 вольт, то на первый взгляд можно легко предсказать, какая сила тока будет при нагрузке 1 Ом. Очевидно, что нужно ожидать, что по цепи пройдёт ток, равный 12 Ампер.

На самом деле это утверждение не соответствует действительности: ток будет немного меньше — примерно 11.2 Ампера. Здесь нет никакого несоответствия физике. Ведь при расчёте дополнительно требуется учитывать сопротивление источника тока, из-за которого происходит расход энергии. Оно называется внутренним. Его можно мысленно представить как резистор, соединённый последовательно с источником тока.

Метод непосредственной оценки

Чтоб реализовать такой метод необходимо применить омметр, схема которого ниже:

Данное устройство состоит из измерительного механизма ИМ (тип механизма магнитоэлектрический), шкала которого градуируется в омах. Также существует источник питания постоянным током U и резистор добавочный Rд. К выходным зажимам А и В производят подключения измеряемого сопротивления RX. Соответственно в цепи будет протекать ток:

Где RД, RИ, RХ – добавочный резистор и сопротивления измерительного механизма и соответственно объекта, который подлежит измерению. При этом угол отклонения стрелки прибора будет равен:

Где S1 – чувствительность токового измерителя.

Если зажимы А и В разомкнуть (
) , то угол отклонения стрелки прибора будет равен нулю α=0, а если их закоротить (R=0), то угол отклонения будет максимален. Поэтому у омметра шкала обратная – ноль у него справа.

Омметры довольно таки удобны в практическом применении, но они имеют довольно высокую погрешность (класс точности 2,5). Это связано с нестабильностью источника питания и неравномерностью шкалы. Дабы устранить причину неравномерности шкалы в омметрах стали использовать логометрические измерительные механизмы:

Такие приборы получили название мегомметров. Для получения источника питания в мегомметрах используют небольшие генераторы напряжением до 2500 Вольт и приводящиеся в движение вручную. В электронных же мегомметрах в качестве источника могут быть использованы батарейки или же внешний источник питания, подключаемый через специальный блок питания устройства. Мегомметры применяют для измерений больших сопротивлений, таких как сопротивление изоляции проводников. Для измерений свыше 109 Ома применяют специальные электронные устройства, которые носят название тераомметров.

Измерение напряжения в сети

Чтобы правильно выполнить измерение напряжения необходимо четко представлять принцип и объект исследования. Поэтому следует отметить, что напряжение представляет собой такую электрическую величину, которая показывает разность заряда между двумя электрическими точками. К примеру, если в одной точке заряд составит +35 В, а в другой +310 В, то разница между этими точками составит 310 – 35 = 275 В, это и будет напряжение. Соответственно измерение напряжения может производиться только относительно чего-то, поэтому используются сразу две точки.

Рис. 1. Схема измерения напряжения

суббота, 5 февраля 2011 г.

Измерение тока вольтметром.

В статье «вольт амперная характеристика солевого расствора» для измерения тока цепи использовался вольтметр подключённый параллельно резистору с сопротивлением 1 кОм. Если вместо резистора с сопротивлением 1 кОм подключить резистор с сопротивлением 1 Ом то зная сопротивление элемента, напряжение на нём и то что во всех элементах цепи ток будет одинаковым так как они соединены последовательно учитывая закон Ома можно сделать вывод что ток в цепи будет равен напряжению на резисторе с сопротивлением 1 Ом. Используя переключатель, резисторы, вольтметр и провода можно собрать амперметр по схеме:

Переключив переключатель на резистор R2 можно измерять ток в амперах, переключив на R1 в миллиамперах. На схеме учитывается что сопротивление вольтметра равно бесконечности (проводимость равна нулю) т.е. вольтметр можно заменить разрывом цепи. На изображении ниже приведена фотография собранной схемы для измерения тока вольтметром.

Используя многопозиционный переключатель и резисторы с другими значениями сопротивлений можно измерять токи с другими множителями но не стоит выбирать резисторы со слишком большим сопротивлением так как при этом на показания вольтметра будет влиять проводимость самого вольтметра. При выборе резистора со слишком низким сопротивлением показания вольтметра также будут не точными из за влияния сопротивления проводов и других паразитных сопротивлений. Если в схеме на рисунке 1 вместо вольтметра подключить осциллограф то таким устройством можно будет определять форму тока в схемах. Осциллограф как и вольтметр обладает большим сопротивлением (в идеале равным бесконечности) и измеряет только форму напряжения на элементах к которым он подсоединяется последовательно поэтому для определения формы тока необходимо подключать в цепь схемы измерительный резистор с малым отклонением сопротивления для более точых измерений. В схеме для измерения тока вольтметром (рисунок 1) также для получения более точных значений тока необходимо использовать более точные резисторы.

Измерения переменных токов и напряжений

Рабочими средствами измерений переменных токов и напря­жений являются амперметры (микро-, милли-, килоамперметры), вольтметры (микро-, милли-, киловольтметры), компенсаторы переменного тока, универсальные и комбинированные приборы, а также регистрирующие приборы и электронные осциллографы.

Особенностью измерений переменных токов и напряжений является то, что они изменяются во времени. В общем случае изменяющаяся во времени величина может быть полностью пред­ставлена мгновенными значениями в любой момент времени.

Переменные во времени величины могут быть также охарактери­зованы своими отдельными параметрами (например, амплиту­дой) или интегральными параметрами.

К интегральным параметрам относятся:

где x(t)

— изменяющаяся во времени величина.

Таким образом, при измерении переменных токов и напряжений могут измеряться их действующие, амплитудные, средневыпрямленные, средние и мгновенные значения. В практике электрических измерений чаще всего приходится измерять синусоидальные переменные токи и напряжения, которые обычно характеризуются действую­щим значением. Поэтому подавляющее большинство средств измерений переменных токов и напряжений градуируются в дей­ствующих значениях для синусоидальной формы кривой тока или напряжения.

Малые переменные токи измеряют цифровыми, элек­тронными и выпрямительными приборами, малые переменные напряжения — электронными вольтметрами. Наиболее широкий диапазон измерений переменных токов при прямом включении средств измерений обеспечивают выпрямительные приборы. Они имеют относительно широкий диапазон и при измерении перемен­ных напряжений. Эти приборы делают, как правило, многопредельными.

Следует также учесть, что эти приборы при отключе­нии выпрямителя используются как магнитоэлектрические приборы для измерений постоянных токов и напряжений. Благодаря такой универсальности и небольшим габаритам выпрямительные приборы широко применяются в лабораторной и производствен­ной практике.

Переменные токи свыше килоампера и переменные напряжения свыше киловольта измеряют с помощью наружных измери­тельных трансформаторов тока или напряжения электромагнитными, выпрямительными и электродинамическими приборами.

Измерения высоких переменных напряжений (до 75 кВ) прямом включении средств измерений позволяют осуществлять электростатические киловольтметры.

Наиболее точные измерения действующих значений синусои­дальных токов и напряжений можно осуществить электродинами­ческими приборами, цифровыми приборами и компенсаторами переменного тока. Однако погрешность измерений переменных токов и напряжений больше, чем постоянных.

Активная мощность измеряется ваттметром, а реактивная мощность измеряется варметром.

Измерение больших мощностей.При измерении больших мощностей используются трансформатор тока и трансформатор напряжения.

Схема подключения показана на рисунке 8.4.

Рисунок 8.4 Схема подключения ваттметра для измерения

Источник

От чего зависит внутреннее сопротивление аккумуляторов.

Производство.

Изначально, на этапе производства аккумуляторов этот параметр конечно заложен в “рецепт”. Ячейка может быть либо мощной и отдавать большой ток (низкое внутреннее сопротивление), либо более энергоёмкой. При условии одинаковых прочих составляющих (компонентов электродов, химии электролита итд.) в более ёмких ячейках необходима бОльшая площадь обкладок. И для того, чтобы эта конструкция уместилась в предоставленный объём, необходимо эти обкладки сделать тоньше. И наоборот. Тонкие обкладки естественно имеют большее сопротивление.

Также влияют и расстояние между электродами, толщина и вещество их обмазки, толщина сепаратора, химия электролита и множество других факторов. Из-за производственного брака ячейки, сделанные по одному “рецепту” могут отличаться как по внутреннему сопротивлению, так и по ёмкости, сроку жизни итд. Из-за длительного и неправильного хранения по пути к потребителю качество также страдает.

Эксплуатация.

Rвн изменяется в зависимости от степени заряженности аккумулятора. При низком и высоком уровне заряда растёт, в среднем – минимально.

Температура электролита (чем холоднее тем выше сопротивление). При отрицательных температурах большинство литий-ионных и литий-полимерных ячеек на столько увеличивают внутреннее сопротивление, что использовать их становится невозможно. Литий-железо-фосфатные и литий-титанатные при таких условиях ведут себя гораздо лучше.

Также в процессе эксплуатации, по мере износа элемента Rвн будет увеличиваться.

Разновидности

Помимо технических параметров, которые определяют назначение прибора и его характеристики, вольтметры обладают и физическими, а именно — разновидностями. Видов современных вольтметров большое количество. Так по принципу действия они разделяются на электромеханические и электронные. По назначению на вольтметров для постоянного, переменного, импульсного тока, универсальные и фазовые.

Наиболее часто людей интересует классификация по виду исполнения, который может быть мобильным и стационарным.


Карманный ЖК цифровой мультиметр

Стационарные

Стационарные вольтметры представляют собой устройства, которые питаются от сетей переменного напряжения. Возможно это благодаря встроенному в их корпус блоку питания. Как правило, с виду они похожи на коробку или ящик, а используются для узкоспециализированных работ, требующих повышенной точности измерений. Чаще всего это профессиональная сфера деятельности и контролирование напряжения на важных и нестабильных участках сети. Само слово «стационарный» говорит о том, что они применяются там, где нужна постоянная слежка и изменение данных.


Стационарный стрелочный вольтметр

Мобильные

Их еще называют переносными, хотя стационарный прибор иногда перенести также не составляет труда. Мобильный же вольтметр компактный и способен поместиться практически везде. Их относят к классу полупрофессиональных и любительских, потому что работают они от батареек или аккумуляторов и обладают сравнительно меньшими точностями и большими погрешностями. Выглядят они как плоские коробочки, «обитые» пластиком или резиной и имеющие эргономические формы. Чтобы они были еще удобнее, их оснащают съемными щупами для определения амплитудных колебаний сигналов.

Вам это будет интересно Буквенное обозначение элементов на электрических схемах

Важно! Как правило, мобильные вольтметры включаются в состав тестеров и мультиметров. Мобильные цифровые вольтметры способны очень точно определить показания, в то время как портативные аналоговые приборы — показать хорошую чувствительность, способную определить даже самые маленькие отклонения напряжения, которые не могут определить цифровые приборы


Цифровой мобильный вольтметр

Техника безопасности

Как видим, процедура измерения силы тока при помощи мультиметра никакой сложности не представляет

Важно только следовать инструкции и не забывать о строгом соблюдении мер безопасности:

  • Перед проведением замеров обесточьте электросеть.
  • Проверьте изоляцию кабелей – при продолжительной эксплуатации ее целостность иногда нарушается, и вероятность поражения электротоком значительно возрастает.
  • Работайте исключительно в резиновых перчатках.

  • Не проводите измерения при высокой влажности воздуха. Дело в том, что влага обладает высокой электрической проводимостью и риск поражения также возрастает.
  • Человек, пострадавший от удара током, нуждается в медицинской помощи. Если есть возможность, любые работы с электричеством, в том числе и измерения, лучше проводить вдвоем. В нештатной ситуации присутствие напарника может оказаться настоящим спасением.

Закончив измерения, разрезанные кабели нужно вновь соединить, предварительно снова обесточив цепь.

Подробно и наглядно про измерения проводимые с помощью мультиметра на видео:

Роль входного сопротивления вольтметра

ТЕМА 3.4. Роль входного сопротивления вольтметра.

Входное сопротивление вольтметра в основном определяется сопротивлением добавочного резистора, так как сопротивление рамки измерительного механизма мало. Но это добавочное сопротивление не может быть очень велико, так как его значение ограничено током, который должен протекать через измерительный механизм. В реальных вольтметрах магнитоэлектрической системы входное сопротивление не превышает нескольких десятков килоом. В ряде случаев для измерения в высокоомных радиотехнических цепях такого входного сопротивления недостаточно, ибо это приводит к значительной ошибке при измерении.

Рассмотрим влияние входного сопротивления вольтметра на показания при измерении в высокоомных цепях:

В отсутствии вольтметра в цепи протекает ток, создающий падение напряжения

При подключении вольтметра сопротивление участка бв

уменьшается и становиться равным

Уменьшается и общее сопротивление цепи абв

, увеличивается ток от источника. Это, в свою очередь, приводит к увеличению падения напряжения на резистореR1 , а следовательно, к уменьшению напряжения на участкебв , где подключен вольтметр. Систематическая ошибка, возникающая при подключении вольтметра (вольтметр измеряет не то напряжение, которое имелось до его подключения, а меньше), зависит от входного сопротивления вольтметра и от сопротивления резисторовR1 иR2 , т. е. от высокоомности цепи. Легко убедиться, что при малом сопротивлении резистораR1 ошибка стремиться к нулю для любого входного сопротивления вольтметра. При определенных, отличных от нуля значенияхR1 иR2 ошибка тем меньше, чем больше входное сопротивление прибора.

Для цепи с подключенным вольтметром ( см. рис. 2.4 )

напряжение на участке цепи Uбв

Абсолютная погрешность составляет:

Относительная погрешность составляет:

Из полученного выражения следует, что при

Аналогично при увеличении входного сопротивления погрешность .Стремление снизить систематическую погрешность измерения привело к необходимости создания вольтметров с высоким входным сопротивлением.

Источник

Измерение напряжения. Вольтметр.

Прибор, предназначенный для измерения напряжения называется вольтметр. И, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

I_1 = I_2 = \frac{U}{R_1 + R_2} = \frac{30}{10 + 20} = 1

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с R_2. Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (I_B = 0), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку r_В имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток. В связи с этим напряжение на резисторе R_2 уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

R_Д = r_В\medspace (n\medspace-\medspace 1)

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример:

Здесь мы добавили в цепь добавочное сопротивление R_3. Перед нами стоит задача измерить напряжение на резисторе R_2:\medspace U_2 = R_2\medspace I_2. Давайте определим, какой результат при таком включении выдаст нам вольтметр:

U_2 = I_2\medspace R_2 = U_В + I_В\medspace R_3

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

U_2 = U_В + I_В\medspace (r_В\medspace (n\medspace-\medspace 1)) = U_В + I_В\medspace r_В\medspace n\medspace-\medspace I_В\medspace r_В = U_В + U_В\medspace n\medspace-\medspace U_В = U_В\medspace n

Таким образом: U_В = \frac{U_2}{n}. То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра!

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи — омметр — и мощности — ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Мощность при последовательном соединение

При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять I = U/R = 100/390 = 0,256 A. На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I 2 x R = 0,256 2 x 390 = 25,55 Вт.

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

  • P1 = I 2 x R1 = 0,256 2 x 200 = 13,11 Вт;
  • P2 = I 2 x R2 = 0,256 2 x 100 = 6,55 Вт;
  • P3 = I 2 x R3 = 0,256 2 x 51 = 3,34 Вт;
  • P4 = I 2 x R4 = 0,256 2 x 39 = 2,55 Вт.

Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.

Порядок работы с универсальным вольтметром

Главное, что нужно усвоить – это требования техники безопасности. Подробно останавливаться на них не будем, поскольку они являются общими для всех электроприборов. При измерении напряжения нужно правильно установить на приборе тип измеряемого напряжения. Если вы по ошибке установите постоянное напряжение, то подключение прибора к цепи с переменным напряжением может вывести его из строя. Как не ошибиться? Постоянное напряжение всегда указывается со знаком (+27 В или -5 В). Переменное напряжение иногда пишется с волной (~220 В). Еще один немаловажный нюанс – перед проведением измерений нужно установить диапазон измерения. Т.е., если вы хотите проверить наличие напряжение +27 В, то нужно установить: постоянное напряжение, пределы измерения больше измеряемого напряжения.

Если величина напряжения в цепи неизвестна, то нужно установить максимально возможный предел измерения, затем постепенно его уменьшать до появления читаемых показаний. Если сделать наоборот и установленный диапазон будет меньше измеряемого напряжения, то прибор выйдет из строя вследствие перенапряжения. Соблюдайте правила техники безопасности!

Какой мультиметр выбрать для автомобиля

Мультиметр — портативное устройство, которое содержит в себе вольтметр, амперметр и другие функции. Он стает незаменимым для радиолюбителей и автовладельцев. Для последних он стал важным прибором, способным проверить и отремонтировать большее количество современной автоэлектроники и проводку.

Для автомобиля подойдет любой специализированный мультиметр, обладающий дополнительными функциями, которые отличают его от обычного. Чтобы разобраться с этим лучше, нужно понять, какие задачи он чаще всего решает.


Схема цифрового вольтметра постоянного тока для определенного диапазона

Наиболее часто прибор применяют для определения утечек из аккумулятора. Такой проверке должны быть подвержены все аккумуляторы, обладающие сильными потерями заряда за короткие промежутки времени. Минимальное значение утечки должно составлять 70 мА. Большее значение свидетельствует о том, что какой-то прибор является проблемным или в цепи проводки есть поврежденный участок.

Вам это будет интересно Правильный и лучший выбор мультиметра

Для диагностики проделывают следующее:

  • Выключить все элементы автомобиля, которые используют энергию аккумулятора;
  • Настроить прибор на измерение постоянного тока и выбрать максимальное значение;
  • Ослабить провод на минусовой клейме и подсоединить туда щупы;
  • Отключить провод от клеймы так, чтобы ток протекал через мультиметр;
  • Замерить значения, которые не должны превышать 70 миллиампер.


Устройство для автомобиля В случае, когда значения не ниже 70, стоит искать участок с проблемами. Для этого аппарата подключается так же, как и в способе выше, поочередно отключаются предохранители и снимаются показания. Если один из предохранителей показал значение ноль при его отключении, то проблема в нем.

Если же все узлы были проверены и оказались исправны, то проблема кроется в самой проводке. Она также проверяется мультимером для поиска неисправного кабеля. Этот процесс состоит из следующих этапов:

  • На глаз оценить состояние проводов;
  • Определить проблемный участок;
  • Один конец мультиметра присоединяется к клейме аккумулятора, а другой — к прибору, который находится на другой стороне кабеля;
  • Установить прибор в нужное состояние и устроить прозвонку участка провода;
  • При наличии звукового сигнала провод исключается из проблемных, так как с ним все хорошо.

Проверка аккумулятора мультиметромВажно! При изменении параметров низковольтных сетей иногда может потребоваться специальный инструмент — милломметр. Еще одна важная функция мультиметра — прозввон мотора авто и измерение его параметров

Любой автомобильный мультиметр должен уметь проводить диагностику двигателя на минимальном уровне

Еще одна важная функция мультиметра — прозввон мотора авто и измерение его параметров. Любой автомобильный мультиметр должен уметь проводить диагностику двигателя на минимальном уровне.


Прозвон отсоединенных кабелей авто

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все про сервера
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: